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Two boundary element methods of simulating crack growth in the presence of residual stress fields are
presented, and the results are compared to experimental measurements. The first method utilizes linear
elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the resid-
ual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis,
and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading.
The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth
simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree
well with experimental measurements of crack growth in prestressed open hole specimens. Results are
also presented for the case where the prestress is applied to specimens that have been precracked.

1. Introduction

Surface treatment techniques are increasingly being used by
manufacturers to enhance the fatigue performance of critical
parts. These techniques introduce residual stress fields into the
part. The residual stress fields affect the fatigue life of the com-
ponents; compressive stresses generally prolong fatigue life by
reducing crack growth rates and possibly by delaying crack in-
itiation, whereas tensile stresses generally reduce fatigue life.
The ability to predict the effect of the surface treatment on the
fatigue life of the components is important because the rate of
growth of a crack will determine when the component must be
repaired or replaced.

Considerable interest in the influence of residual stresses on
the crack growth occurred in the 1970s, particularly in aircraft
industries. Among the first published studies are those of Potter
and Grandt (Ref 1) in 1975 when the superposition procedure
was first proposed and Rich and Impellizzeri (Ref 2) in 1976
where some correlations between analytical and experimental
results were shown. Later, Chang (Ref 3) presented additional
correlations and a procedure that uses approximate analytical
stress solutions for both the residual and applied stresses. At
approximately the same time, Hsu and Aberson (Ref 4) used a
Green’s function approach to determine the stress intensity fac-
tors due to the residual stress fields. This work was extended to
interface-fit fastener holes by the same authors and Rudd (Ref
5). Armen, Levy, and Eidinoff (Ref 6) used weight functions
for a crack at a hole in a finite width plate to calculate the resid-
ual stress intensity factors from residual stress states deter-
mined from a nonlinear finite element method (FEM). Cook et
al. (Ref 7) presented and compared a numerical study (by using

a nonlinear FEM formulation combined with Green’s func-
tions) and an experimental investigation of crack growth rates
for components subjected to prestress. Other authors, for exam-
ple Mann and Sparrow (Ref 8), Buxbaum and Huth (Ref 9),
Heller et al. (Ref 10), Heller and Carey (Ref 11), and Clarck
(Ref 12) have developed the subject. More recent research is
found in Aliabadi and Brebbia (Ref 13) and Aliabadi and Terra-
nova (Ref 14).

Two boundary element methods (BEM) are used to study
the fatigue crack growth in the presence of residual stress
fields. The first method utilizes an elastoplastic BEM to evalu-
ate the residual stresses due to uniform prestress applied at the
ends of a component containing a central hole (Ref 15). The lin-
ear elastic weight function method is then used to obtain the
stress intensity factor due to the fatigue load as well as the re-
sidual stress fields. Crack growth rates are computed and com-
pared with experimental measurements. The second technique
uses a newly developed dual (BEM) formulation for elastoplas-
tic simulation of fatigue crack growth (Ref 16). In this method,
a nonlinear J-integral is used to evaluate the equivalent stress
intensity factors. Results are obtained for both an initially
smooth specimen and a precracked specimen.

2. Linear Elastic Fracture Mechanics (LEFM)
Approach

In the linear elastic fracture mechanics (LEFM) approach, it
is assumed that the residual stresses formed by the prestress of
the uncracked hole are not affected by the presence and growth
of a fatigue crack. The residual stress distribution can be con-
sidered as a mean stress contribution, which affects the stress
intensity factor ratio R, but not the range ∆K, as shown below.
In the LEFM, the principle of superposition is valid, and in the
presence of residual stresses, the parameter K can be expressed
as: 

K = Ktotal = Kapplied  load + Kresidual   stresses (Eq 1)
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For the minimum and maximum applied stress levels Eq 1
can be expressed as:

Kmax = Ktot
max = Kapp

max + Kres (Eq 2)

and

Kmin = Ktot
min = Kapp

min + Kres (Eq 3)

so it follows from the above equations that

∆K = Kapp
max − Kapp

min (Eq 4)

which is independent of Kres. The stress intensity ratio, R, is
given by:

R = Rtot = 
Ktot

min

Ktot
max

 = 
Kapp

min + Kres

Kapp
max + Kres

(Eq 5)

In contrast to ∆K, the effect of Kres, particularly when it is large
and negative, is important in determining R.

2.1 Stress Intensity Factor Calculations

Weight functions (WF), are the displacement boundary
fields in an elastic body created by the application of a pair of
opposing unit forces acting on the crack faces near to the crack
tip. The main aspect of the weight functions is that they satisfy
the equations of linear elasticity, but present a singularity at the
crack tip which normally would not be admissible as a physical
field. Due to this characteristic, Bueckner named them “ funda-
mental fields.”  Applying Betti’s reciprocity theorem, the stress
intensity factor for a given state can be obtained from the
knowledge of Bueckner’s fundamental fields and the boundary
tractions for that given state.

Aliabadi and Rooke (Ref 17) showed that the stress intensity
factors for modes I and II can be obtained from a generalized in-
tegral expression:

KN
(1) = 

E′

4√2πBN
    ∫  

Γ
t(1) ⋅ uN

(2) dΓ   N = I, II (Eq 6)

where Γ is the boundary on which the known surface tractions
t(1) are applied and BN is the strength of the singular fields (Ref
18). In this equation, E′ = E/(1 – ν2) for plane strain and E′ = E
for plane stress. The term u

N
(2) represents the displacement field

on the boundary Γ, which results from the singular field of
strength BN at the crack tip.

As stated, one of the consequences of the application of
LEFM is that the principle of superposition is valid. Hence, the
loads acting on a body can be studied independently, and the
separate effects can be added together. The end result is the
same as if all the loads had been jointly applied. The calculation
of stress intensity factors for a cracked body subjected to both

residual stress on the crack faces and a remote load is described
in the following sections.

Stress Intensity Factors for the Remote Load. The stress
intensity factor for the applied load can be obtained using Eq 6:

K
I
app

(1)  = 
E′

4√2πBI
    ∫  

Γapp

σappu2I
(2)dΓ (Eq 7)

where Γapp represents the boundary on which the load, σapp, is
applied and u

2I
(2) represents the component of u

I
(2) in the direc-

tion of the load. In this case, the integrand is regular, and a sim-
ple Gauss integration scheme can be used (Ref 15).

Stress Intensity Factors for Loading on the Crack Faces.
Residual stresses develop around stress concentrations that are
the regions where it is most likely a crack will initiate. Prior to
the initiation of a crack, residual stresses may be present along
the crack path. The determination of the stress intensity factor
due to these residual stresses on the crack faces present more
difficulties than for remote loading. Because these tractions
have to be integrated by a weight function that is singular at the
crack tip, special integration techniques must be used. The
stress intensity factor is given by:

K
I
res

(1) = 
E′

4√2πBI

   ∫  
Γ

res

σresu2I
(2) dΓ (Eq 8)

where Γres represents that part of the crack faces which are
within the region of the residual stress fields, σres. Because of
the singular behavior of the crack face weight function, O( 1

√r
),

where r is the distance to the crack tip, a Gauss Chebyshev rule
that takes into account this type of singularity was used. This
procedure is necessary if accurate values of the integral are to
be obtained.

Numerical Weight Functions. The weight functions are
obtained numerically using BEM rather than analytically be-
cause numerical weight functions can be obtained for any ge-
ometry, whereas analytical weight functions are restricted to
simple geometries. However, there are some numerical diffi-
culties due to the singularity in the fundamental fields. A for-
mulation that subtracts the singular part of the stress fields,
known as the subtraction of fundamental fields techniques
(SFF) was used in this work. See Aliabadi, Rooke, and Cart-
wright (Ref 20).

3. Elastoplastic Fracture Mechanics (EPFM)

The formulation proposed by Leitao, Aliabadi, and Rooke
(Ref 21), is briefly described here. In this formulation, the trac-
tion boundary integral equation is used together with the dis-
placement boundary integral equation in a way that overcomes
the need for subregions in general mixed-mode elastoplastic
fracture mechanics (EPFM) problems. The von Mises yield cri-
terion and the elastoplastic relationship, described by Mendel-
son (Ref 22), between equivalent total strains and increments
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of equivalent plastic strain due to a given load increment were
adopted.

Assuming that the material is homogeneous, the boundary in-
tegral representation of the displacement components ⋅ui (where
the dot denotes dependence on the load history) for points at the
boundary can be expressed as follows:

ciju
.
j(x′) + ∫  

Γ
Tij(x′, x)u

.
j(x)dΓ(x) = ∫  

Γ
Uij(x′, x)t 

.
j (x)dΓ(x)

 + ∫  
Ω

σjki(x′, x)ε
.
jk
p (x)dΩ(x) (Eq 9)

where x′ and x are the source point and the field points, respec-
tively; ⋅tj are the boundary tractions; Γ and Ω are the boundary
and the domain of the body, respectively; Uij, Tij, and σjki are
known as the Kelvin fundamental solutions and represent the
generalized displacements, tractions, and stresses in an infinite,
elastic and homogeneous body subjected to unit forces. See
Aliabadi and Rooke (Ref 17). The plastic strains are repre-
sented by the plastic strain tensor ε

.
jk
p , and cij is a constant that

depends on the geometry at the collocation point.
The second equation required on one of the crack surfaces

for the implementation of the dual boundary element method is
the traction boundary integral equation. This can be obtained
by the differentiation of the displacement boundary integral
equation given in Eq 9 followed by the application of Hooke’s
law and the definition of tractions:

t
.
i = σ

.
ijnj (Eq 10)

where nj denotes the components of the outward normal vector
to the boundary. This results in:

1
2

 t
.
j(x′) + ni(x′) ∫  

Γ
Tijk(x′, x)u

.
k(x)dΓ(x) = 

ni(x′) ∫  
Γ

Uijk(x′, x)t
.
k(x)dΓ(x)

 + ni(x′) 

∫  

Ω
σijkl(x′, x)ε

.
kl
p (x)dΩ(x) + 

1
2

 fij(ε
.
kl
p )


(Eq 11)

where Tijk and Uijk contain derivatives of Tij and Uij, respec-
tively, and the independent term fij results from the differentia-
tion of the domain integral in Eq 11.

The stress at internal points are obtained from the following
equations:

σ
.

ij(x′) = ∫  
Γ

Uijk(x′, x)t
.
k(x)dΓ(x) − ∫  

Γ
Tijk(x′, x)u

.
k(x)dΓ(x)

    + ni(x′) 

∫  

Ω
σijk l(x′, x)ε

.
kl
p (x)dΩ(x) + 

1
2

 fij(ε
.
kl
p )


(Eq 12)

3.1 Incremental and Iterative Strategies

Nonlinear problems are usually solved by adopting a load
incremental procedure and by iterating on a particular equa-
tion. If the unknowns (initial strains in this case) appear explic-

itly and are not known a priori, a recursive relationship among
the stresses, the boundary unknowns, and the plastic strains
must be used. Iterations are carried out until equilibrium, com-
patibility, and constitutive/plasticity relationships are all satis-
fied. The iterative scheme used here is described in Ref 23 and
does not depend on the loading technique. The definition of the
load increments and the loading path can, however, depend on
whether the problem is load or displacement controlled. The
type of problems analyzed here are load controlled, and the
loading is monotonic, which simplifies the incremental strat-
egy.

The stresses are calculated by assuming elastic behavior for
a given initial load. The highest of the calculated stresses is
made equal to the yield stress by scaling down or up accord-
ingly. This defines the load at first yield. Subsequent load incre-
ments are found by adding to the previous one a percentage of
the initial load. In crack problems, the highest stresses occur at
the nodes of the discontinuous cells adjacent to the crack tip.

3.2 Crack Growth Analysis

Numerical simulation of crack propagation requires an in-
cremental crack extension analysis; at each new position of the
crack-tip, stress intensity factors are calculated in the new con-
figuration. By using appropriate criteria it is possible to rede-
fine the direction of the crack path at each increment.

Recently Leitao, Aliabadi, and Rooke (Ref 24) presented a
formulation for elastoplastic crack growth analysis using
BEM. This method is used here to simulate crack growth in the
presence of residual stresses. Crack growth is simulated by al-
lowing the crack to grow by a fixed amount (defined by the size
of the elements on the crack faces) for a constant load applied
at the extremes of the component; this load corresponds to the
maximum value of the fatigue load. The minimum load was as-
sumed to be zero. At each stage of the crack growth, nonlinear
J-integrals (i.e., T* integrals) are obtained. The T* integral, de-
fined by Atluri (Ref 25), is given as:

T∗ = lim
ρ → 0

  ∫  
Γρ

(Wn
1
 − tiui,1)dΓ (Eq 13)

where W is the strain energy density and ρ is the radius of a con-
tour Γρ surrounding the crack tip. Applying Green’s theorem to
the above equation gives:

T∗ = ∫  
Γ′

(Wn
1
 − tiui,1)dΓ − lim

ρ → 0
  ∫  

Ω−Ωρ




W1 − 

∂
∂xj

 (σijui,1)



 dΩ

(Eq 14)

where Ω is the region within a general contour Γ′ and Ωρ is the
region within Γρ.

Equivalent stress intensity factors (i.e., KI
max = √T∗E ,

KI
min = 0) are then calculated, and the fatigue crack growth pa-

rameters ∆K and R can now be determined for use in a crack
growth prediction.
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4. Prediction of Fatigue Crack Growth

4.1 Fatigue Crack Growth

Crack growth can be induced by several mechanisms of
which fatigue due to cyclic loading is the most important. It is a
basic assumption of LEFM that the growth of a crack is control-
led by the stress field surrounding the crack tip. As the stress in-
tensity factor K characterizes this stress field, it must also
control the fatigue crack growth, which can be expressed as the
distance, da, a crack of length a moves per number of cycles,
dN. Several models reported in the literature suggest that the rate
of growth per cycle of stress (da/dN) is a function of the stress in-
tensity factor range, ∆K = Kmax – Kmin, the ratio, R = Kmin/Kmax,
and of some material characteristics, here represented by C.
The general empirical function can be expressed as:

da
dN

 = f(∆K,R,C) (Eq 15)

Instead of an empirical expression, a computer program that
extrapolates and interpolates experimental data was used. This
computer program (Ref 26) utilizes a database of da/dN versus
∆K for various R ratios for the BS2L65 aluminum alloy used in
the experiments. For a given R value and stress intensity factor
range, the program interpolates between the specified data
points or extrapolates outside them in order to obtain the crack
growth rate (in practice a set of curves for alternating stress in-
tensity factor against crack rate, each curve being at a constant
value of the ratio R).

4.2 Numerical Application (LEFM/WF)

The effect on fatigue crack growth of the application of a life
enhancement technique known as prestressing is reported in
this section. The prestressing, or overloading, involves subject-
ing the specimen to a single load large enough to produce local
plasticity in the vicinity of the hole thus creating a residual
stress field on unloading. This is very simple to perform under
experimental conditions, but its usage is restricted to laboratory
studies.

Uncracked Components. The specimen geometry and ma-
terial properties are as shown in Fig. 1. Plane stress conditions
are assumed. The specimen has initially undergone prestress-
ing. The prestressing technique involved applying an increas-
ing load to the ends of the specimen until the material
undergoes plastic deformation around the stress concentration
at the edge of the circular hole, and then removing the load.
This technique was used by Cook et al. (Ref 19) in their experi-
mental study of the specimen shown in Fig. 1. The specimen
universal number is 2014 with heat treatment T6 and rolling di-
rection LT. See ESDU (Engineering Services Data Unit) data
sheet L 168. The specimens tested were subjected to uniaxial
fatigue loading; the loading was constant amplitude sinusoidal
with a mean stress of 110 Nmm–2 on the net section. The ampli-
tude corresponds to minimum and maximum gross section
stresses of 3.03 Nmm–2 and 46.34 Nmm–2 at the free end.

Prestressing was modeled numerically by the application of
a single uniaxial tensile load at both ends of the specimen. This
load caused local plasticity in the region around the central

hole. On removal of this load, a residual stress field remained.
Three overloads were used, namely 237, 277, and 317 KN,
which resulted in average net stresses equivalent to 60%, 70%,
and 80% of the 0.1% proof stress (i.e., σY = 465 Nmm–2).

For the numerical analysis two different models must be
considered. An elastoplastic model is used to obtain the resid-
ual stress field due to the prestress, for which a BEM elastoplas-
tic analysis is carried out. The residual stress distribution across
the test section induced by the prestress technique is shown in
Fig. 2. In all cases, the residual stress distribution was compres-
sive at the edge of the hole, becoming tensile further away be-
fore tending to zero. A linear elastic model is used to obtain the
stress intensity factors due to the total load. These stress inten-
sity factors were evaluated over the range of crack lengths
judged relevant. The following crack lengths were considered:
0.4, 0.65, 1.0, 1.35, 2.0, 3.0, 4.0, and 5.0 mm.

Fig. 1 Fatigue test specimen

Fig. 2 Residual stress distributions due to the prestress
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The variation of Kres with crack length for each prestress
value is shown in Fig. 3. Kres = 0 for the uncracked body and
reaches its maximum negative value at the highest prestress
level for a crack length of approximately 0.8 mm. Kres then in-
creases to a small positive value at longer crack lengths. Figure
4 shows the variation of Ktot with crack length for the various
prestress levels. The reductions in Ktot with increasing
prestress, at short crack lengths, follow directly from the in-
creases in compressive residual stress fields.

Initially Cracked Specimens. Cracked components are
normally repaired by removing the damage and possibly using
a life enhancement treatment such as cold expansion. It may not
always be practical to remove some or all of the damage, and
even after the removal treatment, there remains the possibility
that some damage will remain. Simulation of this type of struc-
tural repair is achieved by modeling the prestressing of an in-
itially cracked specimen.

As for the previous section, the numerical analysis requires
two different models. First is an elastoplastic model similar to
the one described, except for the fact that now the analysis is re-
peated for the range of initial cracks adopted; these are 1, 2, and

3 mm. Semidiscontinuous boundary elements and cells are
used in the area adjacent to the crack tip to avoid difficulties
with the modeling of the singularity of the tractions and stresses
at that point. The same prestress levels as in the previous exam-
ple were used. Second, the same linear elastic model as that for
the uncracked component above was used.

The residual stress variation with position, ahead of the
crack, is shown in Fig. 5 at each overload level for the three in-
itial cracks. In Fig. 6, the same stress fields are represented for
the three overload levels at each initial crack, except for the
largest, where only the first two overload levels are shown.
Plastic collapse was attained for the highest overload at the
largest initial crack. Crack growth predictions from the initial
crack length as a function of the number of cycles are repre-
sented in Fig. 7.

Fig. 4 Stress intensity factor, K, due to applied and residual
stresses

Fig. 5 Residual stress distributions (a) 60% prestress, (b) 70%
prestress, and (c) 80% prestress

Fig. 3  Stress intensity factor, K, due to residual stresses

(a)

(b)

(c)
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Comparison of Fig. 3 and 5 shows that the residual stresses
are more compressive for the precracked than for the uncracked
components. The distribution of these stresses ahead of the in-
itial crack is similar for all crack lengths at each overload. The
depth of plastically deformed material increases with increas-
ing magnitude of overload at each initial crack length. Fatigue
lives reflect the effect of these residual stresses. The number of
cycles to failure increases appreciably with the level of prestress
applied and the initial crack length. Figure 7 shows that the ratio of
life after prestress of cracked specimens over the residual life of
uncracked specimens increases with initial crack length.

4.3 Numerical Application (EPFM/J)

In this section, the crack growth procedure based on elasto-
plastic fracture mechanics and a nonlinear J-integral, as de-

scribed in the earlier section, is applied to the specimen. The
specimen is subjected to the same prestress levels with initial
crack sizes of 0.5, 1.0, and 2.0 mm.

The stress intensity factors, calculated from the T* integral,
were evaluated over the range of crack lengths judged relevant.
The following crack lengths were considered: 0.5, 1.0, 2.0, 3.0,
4.0, and 5.0 mm. The load applied to the ends of the specimen
corresponded to a gross section stress of 46.34 Mmm–2.

Crack Growth of Initially Uncracked Specimens. Pa-
rameters such as COD and CTOD give indications about the
fracture process. Even if these parameters are not used to pre-
dict crack growth, it is interesting to have an idea of the dis-
placements of the crack faces (crack profiles) at a certain crack
extension stage. Figure 8 shows the crack surface profiles as
predicted during the crack growth simulation of all the cases
analyzed, namely the three prestress loads and the nontreated

Fig. 6 Residual stress distributions (a) 1 mm initial crack, 
(b) 2 mm initial crack, and (c) 3 mm initial crack

Fig. 7 Variation of crack length with the number of cycles (a) 1 mm
initial crack, (b) 2 mm initial crack, and (c) 3 mm initial crack

(a)

(b)

(c)

(a)

(b)

(c)
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case. The crack surface profiles from earlier elastic crack
propagation analysis are also represented in the same figure.

The roughness of the profiles, especially for longer cracks,
is partly due to the use of discontinuous boundary elements on
the crack faces but, above all, to the element release technique
developed. Smoother profiles can be obtained if more elements
are used in the crack region. Because the differences are not
significant, the refinement of the boundary mesh was not con-
sidered necessary.

The component of the displacement normal to the crack de-
creases for increasing prestress level. This decrease is rela-
tively more important for shorter cracks than for longer cracks.
This is expected since the region of compressive residual
stresses increases with the prestress level and because the mag-
nitude of these stresses are greater close to the edge of the hole.
Close to the crack tip and for all the situations, the profiles are
very similar after the first two or three crack extensions. This is
probably because the cracks have grown beyond the initial
plastic region (approximately 2 mm for the highest prestress
level). At the edge of the hole, in the crack mouth region, there
is a tendency for the crack faces to become flat especially for
longer cracks at the highest prestress level.

The angle the crack faces makes at the crack tip, CTOA, is
another important crack growth criterion. Without attempting
to quantify this parameter, it seems that it stabilizes after the
third crack extension. This may be related to the fact that the
crack extends by constant amounts: 0.5 mm for the first two ex-
tensions and 1 mm for the subsequent ones. The same can be
said for the COD. These two parameters, although widely used,
are problematic because it is difficult to define where exactly
any measurements should be made.

Crack Growth Rates. Predicted crack growth for the three
prestress values are shown in Fig. 9(a-c) together with experi-
mental data (Ref 19). In these figures, the computed values in-
clude both the LEFM/WF model and the EPFM/J model. The
comparison of the predictions shows good agreement with ex-
perimental results for the range of cracks analyzed. The differ-
ence between the two sets of predictions seems to be more
important for higher prestress levels and in the region of shorter
cracks. This suggests that further research should concentrate
on the region of short cracks.

Crack Growth of Initially Cracked Specimens. The case
of precracked specimens being subjected to prestressing is ana-
lyzed here. The simulation of the growth of cracks in the pres-
ence of the residual stresses created by prestressing is carried

Fig. 8 Crack surface profiles

Fig. 9 Comparison of predicted and experimental crack growth
rates for (a) 60% prestress, (b) 70% prestress, and (c) 80%
prestress
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out in a similar way to that of initially uncracked specimens.
The only difference is the presence of the initial crack.

The crack surface profiles for the crack growth simulation
of precracked specimens are shown in Fig. 10. The effect of
prestressing initially cracked specimens is characterized, in all
the cases, by two main aspects. First, there is an abrupt change
in the profile of crack opening at the position of the original
crack tip. Second, in the region that goes from the crack mouth
to the initial crack tip, the normal displacements are much
closer to the elastic crack profiles especially for the longer
cracks.

5. Conclusions

Fatigue crack growth through a residual stress field due to
prestressing was analyzed using the usual LEFM approach as
well as a new nonlinear EPFM approach. The results were in
reasonable agreement to each other as well as experimental
measurements. The EPFM approach appears to be superior to
the LEFM approach for the highest prestress level and the
shortest cracks, where plastic deformation is likely to be most
significant. In addition, the application of the life enhancement
techniques can only be studied in detail with the EPFM tech-
nique.
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